$$y_{i} = b + M(\lambda_{i}) + \sum_{\vec{h}} \alpha_{\vec{h}} \exp \left[(-4\ln 2) (d_{i} - d_{\vec{h}})^{2} / S_{i}^{2} \right] + v \sum_{\vec{h}'} f_{\vec{h}'} \exp \left[(-4\ln 2) (d_{i} - d_{\vec{h}'})^{2} / S_{i}^{2} \right]$$
(1)

where b is the time independent background, λ_i is the neutron wavelength scattered into channel i, $M(\lambda_i) = \beta d_i^{-\gamma} e^{-\delta/\lambda_i^2}$ is a Maxwellian intensity function with three variable parameters $\beta,~\gamma,~\delta$ used to fit the time-dependent background, $d^{}_{1}$ is the wavelength scattered into channel i divided by the factor $2\sin\theta$ where 2θ is the scattering angle (30 or 60 deg), and S_i is the instrumental linewidth at half peak height for each channel. The symbols \vec{h} and \vec{h}' stand for the Miller indices (hkl) for the KCN peaks and for the Al_20_3 peaks respectively which might be present in the pattern. The calculated plane spacings for KCN and Al_20_3 , $d_{\vec{h}}$ and $d_{\vec{h}}$, respectively, are determined from the lattice parameters which are the only adjustable parameters which affect the peak positions. α_{h}^{\rightarrow} and f_{h}^{\rightarrow} , are the peak amplitudes of the KCN peaks and the Al_20_3 peaks respectively, and v is an overall intensity factor for Al₂0₃. The KCN peak amplitudes $\alpha_{\overrightarrow{h}}$ are treated as variable parameters while the relative amplitudes $f_{\vec{h}}$, for Al₂0₃ are held fixed at values determined from a pure $A1_20_3$ diffraction pattern. Pb peaks, if present, are treated in the same manner as Al_20_3 peaks. This allows an accurate subtraction of Al203 and Pb peaks from the pattern which in all cases were very small at the 60° scattering angle. In some regions of the diffraction pattern the intensities obtained from

6